1 Le nombre 4 est-il solution de chacune des équations ?

a.
$$5x - 6 = 3x + 2$$

Pour x = 4, on calcule :

• d'une part, 5x - 6

$$= 5 \times 4 - 6 = 20 - 6 = 14$$

• d'autre part, 3x + 2

$$= 3 \times 4 + 2 = 12 + 2 = 14$$

est solution de cette équation.

b.
$$x^2 - 9 = 3x - 5$$

Pour x = 4, on calcule:

• d'une part, x^2 – 9

$$= 4^2 - 9 = 16 - 9 = 7$$

• d'autre part, 3x - 5

$$= 3 \times 4 - 5 = 12 - 5 = 7$$

Ces résultats sont égaux donc 4 Ces résultats sont égaux donc 4 est solution de cette équation.

c.
$$\frac{x-1}{12} = \frac{1}{4}$$

Pour
$$x = 4$$
, $\frac{x-1}{12} = \frac{4-1}{12} = \frac{3}{12} = \frac{1}{4}$

donc 4 est solution de cette équation.

2 Tableur À l'aide du tableur, complète la feuille de calcul ci-dessous.

	Α	В
1	х	$x^2 + x - 2$
2	- 5	18
3	- 4,5	13,75
4	- 4	10
5	- 3,5	6,75
6	- 3	4
7	- 2,5	1,75
8	- 2	0
9	- 1,5	-1,25
10	- 1	-2
11	- 0,5	-2,25

12	0	-2
13	0,5	-1,25
14	1	0
15	1,5	1,75
16	2	4
17	2,5	6,75
18	3	10
19	3,5	13,75
20	4	18
21	4,5	22,75
22	5	28

On souhaite résoudre l'équation d'inconnue x : $x^2 + x - 2 = 4$.

a. Margot dit que le nombre 2 est solution. A-t-elle raison? Justifie.

Oui, car pour x = 2, $x^2 + x - 2$ est égal à 4.

b. Léo pense que le nombre 18 est solution. A-t-il raison? Justifie.

Non, car pour x = 18, $x^2 + x - 2 = 344$ qui est différent de 4.

c. Peut-on trouver une autre solution? Justifie.

Oui, car pour x = -3, $x^2 + x - 2$ est égal à 4 d'après la feuille de calcul. Donc - 3 est une autre solution.

Tableur Dans la feuille de calcul ci-dessous, la colonne B donne les valeurs de l'expression $2x^2 - 3x - 9$ pour des valeurs de x de la colonne A.

		Α	В
	1	х	$2x^2 - 3x - 9$
	2	- 2,5	11
	თ	- 2	5
	4	- 1,5	0
	5	- 1	- 4
	6	- 0,5	- 7
	7	0	- 9
	8	0,5	- 10
	9	1	- 10

10	1,5	- 9
11	2	- 7
12	2,5	- 4
13	3	0
14	3,5	5
15	4	11
16	4,5	18
17	5	26
18		

a. Si on tape le nombre 6 dans la cellule A18, quelle valeur va-t-on obtenir dans la cellule B18?

Pour x = 6, $2x^2 - 3x - 9$ est égal :

$$= 2 \times 6^2 - 3 \times 6 - 9 = 72 - 18 - 9 = 54 - 9 = 45$$

b. À l'aide du tableur, trouve deux solutions de I'équation : $2x^2 - 3x - 9 = 0$.

- 1,5 et 3 sont 2 solutions de l'équation

$$2x^2 - 3x - 9 = 0$$